
A Mathematical Model of Bone-Calcium Regulation 
Abstract 
Human plasma calcium regulation is a biologically complex issue that consists of many 
variables. Plasma calcium is integral to body functions varying from hormone signaling to bone 
management. Systemic calcium regulation is an important field of research because 
dysregulation can lead to developmental and physiological issues. Hypocalcemia, or low calcium 
levels, can hinder bone growth and damage the parathyroid gland. Increased calcium levels, 
hypercalcemia, may hint at osteoporosis or kidney failure. Therefore, it is imperative to 
understand the system. Here, we propose a mathematical model to analyze the stability and 
fluctuations in the plasma calcium regulatory network.  
Introduction 
Plasma calcium levels are controlled by multiple organs. It is primarily regulated by the kidneys, 
bone, and gut. The kidney controls the rate of calcium excretion. The intestinal system controls 
the rate of calcium absorption. The bones control calcium deposit and resorption. Out of the three 
systems, the bone is the biggest variable. 99% of the calcium in the human body is located in 
bone. Bones control the majority of calcium released and absorbed from the plasma and plays a 
big role in maintaining plasma calcium homeostasis. Subsequently, issues in homeostasis also 
largely affect bone. To analyze the system, we chose to focus on how the skeletal system 
interacts with plasma calcium levels.  

  
Figure 1: plasma calcium regulation network 

Bone tissue consists of two major cell types: osteoblasts and osteoclasts. Osteoblasts focus on 
creating bone through secreting minerals for a bone matrix. These cells translate calcium and 
other minerals from the circulatory system to bone. Osteoclasts resorb bone back into the 
circulatory system. Essentially, it recycles the minerals from bone back into the body. These two 
cells are regulated by the competing hormones in the endocrine system. Osteoblasts can be 
regulated by calcitonin, a hormone secreted from the thyroid. Calcitonin signals osteoblasts to 
increase bone formation, lowering plasma calcium levels and transferring the excess calcium into 



bones. Osteoclasts are stimulated by parathyroid hormone (PTH) and vitamin D which signal for 
the cells to increase bone resorption. These hormones are markedly activated when calcium 
levels dip below homeostatic levels, prompting the body to use stored calcium in increasing 
plasma calcium levels. 

Methods 
Before building our model, we want to define some key terminology and abbreviations. A picture 
of the model is shown below for reference. 

  
Osteoblasts are abbreviated as B. Calcium is abbreviated as Ca2+. Since the amount of calcium 
ions far exceed the number of osteoblasts, we will assume that osteoblasts are the limiting 
concentration in this system. Osteoblasts come in two states: bound and unbound. Calcium and 
osteoblasts can bind at a rate k+ and unbind at a rate k-. These rates remain constant and do not 
vary much from external forces. Bound osteoblast-calcium complexes, Bbound, can become 
bone at a rate β. This rate can be modulated by calcitonin, which increases β when 
plasma calcium is too high. Bone can then degrade and release calcium through 
osteoclasts at a rate γ. This rate can be regulated by PTH and vitamin D, which 
increase osteoclast function when plasma calcium is too low.  
However, this model does not place the focus on calcium. While it may be a more 
accurate representation of bone regulation, we are more focused on calcium regulation. 
Therefore, we propose another model revolving around the human calcium levels. In 
this case, we use calcium levels as the rate limiting step. In addition, we add the 
premise that when the osteoblast-calcium complex creates the bone matrix at rate β, it 
also frees unbound osteoblasts. 

  

Results 
We begin analyzing this model by defining the rates of each variable.  

d[B]/dt = k-[B-Ca2+] - k+[B][Ca2+] + β[B-Ca2+] 

d[B-Ca2+]/dt = - k-[B-Ca2+] + k+[B][Ca2+] - β[B-Ca2+] 

d[Bone]/dt = β[B-Ca2+] - γ[Bone]  

d[Ca2+]/dt = γ[Bone] + k-[B-Ca2+] - k+[B][Ca2+] 
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Since we are mainly focused on the interplay between calcium and bone, we will get [B] and [B-
Ca2+] into the other two equations. We will use the conservation law of BT = [B-Ca2+] + [B] to 
replace [B] in our equations.  

[B-Ca2+]ss  = (BTk+[Ca2+])/(k-+k+[Ca2+]+β) 
Thus, we get our final rates: 

d[Bone]/dt = β(BTk+[Ca2+])/(k-+k+[Ca2+]+β) - γ[Bone]  

d[Ca2+]/dt = γ[Bone] + k-(BTk+[Ca2+])/(k-+k+[Ca2+]+β)  
        - k+ BT(k-+β)/(k-+k+[Ca2+]+β))[Ca2+] 

     = γ[Bone] - k+ BTβ[Ca2+]/(k-+k+[Ca2+]+β) 
The steady states are derived below. 

[Bone]ss = (β/γ)[B-Ca2+] = (β/γ)(BTk+[Ca2+])/(k-+k+[Ca2+]+β) 
[Ca2+]ss = (γ[Bone] + k-[B-Ca2+])/k+[B] = -β/k+ 

Biologically, this makes sense. First, analyze the bone steady state. When β increases, 
osteoblasts are essentially being signalled by calcitonin to synthesize plasma calcium 
into bone. Thus, the level of Bone increases. When γ increases, osteoclasts are 
signalled by PTH and vitamin D to break down bone for increasing plasma calcium 
levels. This would decrease the level of Bone. Next, we look at the calcium steady state. 
When β increases, plasma calcium levels decreases. Again, this makes some biological 
sense because increased calcitonin signalling would lower plasma calcium levels.  
Before we continue, we want to address some limitations in our model. For one, it only takes into 
account one aspect of a regulatory system. Without including other factors like kidney and gut 
calcium regulation, we cannot use data to accurately assess the viability of our model. In 
addition, we assume a rate γ for the resorption of bone to calcium. However, this is neither a 
dimensionally accurate method nor conservationally possible because some calcium must be lost 
in steps like creating new cells or mineral degradation. Still, given the methods and topics we 
have learned in class, this is the best possible representation of the system.    
To compute the stability of this system, we calculated the Jacobian and computed its eigenvalues. 
These eigenvalues were 0 and  
-(BTk-k+β+BTk+β2+k-2γ+2k-k+[Ca2+]γ+k+2[Ca2+]γ+2k-βγ+2k+[Ca2+]βγ+β2γ)/(k-+k+[Ca2+]+β)2. 

Since none of our parameters can be negative, the second eigenvalue will always be negative. 
Therefore, the steady state solutions for bone and blood plasma calcium concentrations form a 
saddle point, which is always unstable.  

Conclusion 
With our model, we hoped to show that we could find a stable steady state solution for bone and 
blood plasma calcium concentrations, but we were unable to do so. We were able to find a saddle 
point for the system, but ultimately this is still not stable. To find a stable critical point for our 
bone and blood plasma calcium concentrations, we would likely need a more complex model 
that accounts for calcium in more areas of the body, like the kidney and gut. However, we could 



also more closely model the osteoclast and osteoblast interactions, instead of treating them as 
“black boxes” like we did in our model. Additionally, we could use the Hill Approximation to 
vary the amount of calcium needed to create bone and the amount of calcium released in bone 
degradation, instead of assuming a 1:1 ratio of calcium ions and osteoblasts in bone formation 
and a 1:1 ratio of calcium ions and bone in bone degradation. The Hill Approximation would 
help us further the research and look at cases such as osteoporosis or osteopenia when the rates 
constants vary.


